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NMR relaxation rate and dynamical structure factors in nematic and multipolar liquids
of frustrated spin chains under magnetic fields
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Recently, it has been shown that spin nematic (quadrupolar) or higher multipolar correlation functions
exhibit a quasi-long-range order in the wide region of the field-induced Tomonaga-Luttinger-liquid (TLL)
phase in spin-% zigzag chains. In this Rapid Communication, we point out that the temperature dependence of
the NMR relaxation rate 1/7 in these multipolar TLLs is qualitatively different from that in more conventional
TLLs of one-dimensional quantum magnets (e.g., the spin—% Heisenberg chain); 1/7T; decreases with lowering
temperature in multipolar TLL. We also discuss low-energy features in spin dynamical structure factors which

are characteristic of the multipolar TLL phases.
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Magnetic states with an order parameter defined by a
product of multiple spins, such as nematic, vector chiral, and
scalar chiral orders, have attracted much attention. Spin
nematic-(quadrupolar)-ordered phases have been recently
shown to appear in frustrated ferromagnets such as ferromag-
nets with competing antiferromagnetic (AF) interactions!—
and magnets with multi-spin-exchange couplings.>*> A
triatic-(octupolar)-ordered phase was also found in the trian-
gular lattice multiple-spin-exchange model with ferromag-
netic (FM) dominant coupling.> These nematic- and triatic-
ordered states can be regarded as Bose-condensed states of
bound two magnons'? and bound three magnons,® respec-
tively, and their order parameters are given by S;S; or S;;
and S;TSZS;r or §;8,.5;.

Recent extensive studies®!? have shown that a series of
similar multipolar phases appear in the one-dimensional (1D)
spin—% Heisenberg model with FM nearest-neighbor ex-
change J; and competing AF next-nearest-neighbor exchange
J, in applied field H, whose Hamiltonian is

H= E EJnSj'Sth

n=1,2 j

-HX S}, (1)
J

Here §; is the spin-% operator on jth site, J; <0 and J,>0,
and H is the external magnetic field in the z direction. This
simple frustrated spin chain is a minimal model of frustrated
ferromagnets and is thought to describe magnetism in quasi-
one-dimensional (quasi-1D) edge-sharing cuprates''~'# such
as szClleO:;Olz, Nacuzoz, LiCuVO4, and LiCuZOZ.
Hikihara et al.® and Sudan et al.'’ showed that the ground
state of Hamiltonian (1) has field-induced Tomonaga-
Luttinger-(TL)-liquid phases in which spin multipolar corre-
lations are quasi-long-range ordered while the transverse
spin correlation is short ranged. This result can be easily
understood in the large-magnetization regime, where p mag-
nons form a bound state (p>1).%° A gas of bound p mag-
nons acquires off-diagonal quasi-long-range order, with the
order parameter being the effective hard-core boson creation
operator II._; S, In the original spin language, this off-
diagonal correlation is the multipolar spin correlation
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PACS number(s): 76.60.—k, 75.40.Gb, 75.10.Jm, 75.10.Pq

characterizing a nematic (p=2), an octupolar (p=3), or a
hexadecapolar (p=4) phase. Numerical studies®'* found p
=2 for -2.7<J,/J,<0, p=3 for -3.5<J,/J,=-2.7, and
p=4 for =3.76 <J,/J,=-3.5 at the saturation field. At lower
magnetic fields these phases cross over to spin-density wave
SDW, phases in which the density correlation of bound p
magnons, i.e., the longitudinal SDW, becomes stronger than
the multipolar correlation. Incidentally, a SDW, phase is
present also in the case of AF J,>0.1516

However, it will be difficult to obtain direct experimental
evidence for the multipolar spin orders, as it requires probing
four—or more—spin-correlation functions with high accu-
racy. Standard experimental probes, such as neutron scatter-
ing or magnetic resonance, measure only two-spin correla-
tions. Furthermore, the multipolar TL liquids have a gapless
spectrum and a smooth magnetization curve. Thus, if one
only measures their static thermodynamic quantities (uni-
form susceptibility, specific heat, entropy, etc.), it is hard to
distinguish the multipolar TL liquids from conventional TL
liquids. Experimental schemes for identifying multipolar
spin orders are therefore called for.

In this Rapid Communication, we propose that NMR
measurements can capture signatures (albeit indirect) of the
multipolar TL liquids. We show that in the TL liquids with a
dominant multipolar spin correlation, the NMR relaxation
rate 1/T, decreases as temperature T is lowered [see Fig.
1(a)]. This temperature dependence of 1/T, is opposite to
that in conventional TL liquids (and in SDW,, phases), where
it is always diverging as T— 0, in magnetic field.!” We also
point out that the spin dynamical structure factors exhibit
features which are very characteristic of the multipolar TL
liquids.

Let us begin with a brief review of the effective theories
for the multipolar TL liquids, which allow us to find low-
energy behavior of spin-correlation functions observed in
NMR and in dynamical structure factors. In the weak J,
limit, the Abelian bosonization method!® is useful. It leads to
nematic (p=2) and SDW, phases®”” and a vector chiral-
ordered phase.'” The effective Hamiltonian for the nematic
(p=2) and SDW, phases®” is written as
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FIG. 1. (Color online) Temperature and field dependence of the
NMR relaxation rate 1/7; in (a) multipolar phases in
spin-%-frustrated zigzag chains and in (b) standard TL liquids (e.g.,
the AF Heisenberg chain in magnetic field). The parameter K con-
trols correlations in TL liquids (see the text).

Heffz j dx{ 2 %)[K;l(axqbv)z + KV((?XQV)Z]

+g sin(ﬂ-M)sin(\e"ET(/)_ + WM)}, (2)

where x=2j (the lattice spacing is set equal to unity),
(¢, 6) is a pair of dual scalar fields satisfying the commu-
tator [¢,(x),d,0,(y)]=i6,, ,8x~y), M:(Sf), goJ;, and K.
and v. are, respectively, the TL-liquid parameter and the
velocity of the (¢, ) sector. The (¢, , 0,) sector is a gap-
less TL liquid, while the (¢_, 6_) sector has a gapful spec-
trum because the field ¢_ is pinned at a value minimizing the
potential energy of the g term. Using Hamiltonian (2), one
can evaluate the low-energy and long-distance behaviors of
several correlation functions. The imaginary-time (7) spin
and nematic correlations at zero temperature 7=0 are calcu-
lated as

(S5()S5(0))y = M* ~

(3a)
. B mj e l2-lVE
(Sj (1)8,(0))=C, cos(;)w , (3b)
. (—1y
(87(1S},1(1)S85(0)87(0)) = C3| s +, (3¢)

where z.=j—-iv.7, and C, are nonuniversal positive con-
stants. The exponential decay of the transverse spin correla-
tion in Eq. (3) is qualitatively different from a power-law
decay form in ordinary TL liquids (e.g., the spin—% AF chain
and ladder in magnetic field). The correlation length £ is
inversely proportional to the gap of the (¢_, 6_) sector.
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More generally, the TL-liquid behavior in all the multipo-
lar and SDW,, phases (p =2) can be understood from a hard-
core Bose gas picture of bound p magnons, when the
nearest-neighbor coupling J; is ferromagnetic.® Below the
saturation field, a (dilute) Bose gas of bound p magnons
forms a TL liquid with off-diagonal quasi-long-range order,
i.e., pth multipolar TL liquid. In this picture, one may replace
the pth multipolar operator S7,,S;,,°**S},,, and magnon den-
sity E—S” with a creation operator of a hard-core boson
(- l)fbI and boson density pb'b respectively. Here the stag-
gered factor (=1Y represents the total momentum k=1 of the
lowest-energy bound states. The hydrodynamic theory for
the bosonic TL liquid has the same form as the free boson
Hamiltonian of the (¢, 6,) sector in Eq. (2). The effective
theory gives the following longitudinal spin and the multipo-
lar correlation functions at 7=0:

2
sy =25 L 1)

47
2 .
+ ET?KCOS[%U —2M)} + -+, (4a)
— 1)
H,JﬂHSw)=Qé%%+m, (4b)

where z=j—iv7, K is the TL-liquid parameter for the hard-
core bosons. While we cannot evaluate the transverse spin
correlations within this boson picture, they must decay expo-
nentially «exp(—|z|/ &) as it is necessary to break a magnon
bound state in order to create an excitation with AS*=*1. In
the nematic case of p=2 and J; <0, Eq. (4) coincides with
Egs. (3a) and (3c) if we set K,=2K and v,=v. Near the
saturation field where the density of magnons vanishes, the
value of K approaches unity, i.e., that of the 1D free fermi-
ons. Indeed, the numerical calculations in Ref. 9 have shown
that K monotonically increases from about 1/4 to unity with
the increase in the magnetization M. This means that the
multipolar correlation (4b) is strongest in the high-field re-
gime (2K>1), whereas the SDW correlation (4a) becomes
most dominant in the low-field regime (2K <1). This prop-
erty is important in the following discussion on the NMR
relaxation rate. We note that at p=1, Eq. (4) reproduces the
spin correlations in the TL-liquid phase of, e.g., the spin-%
AF chains under magnetic field.'®

The temperature dependence of the NMR relaxation rate
1/T in the multipolar TL liquids can be derived from the
above asymptotic forms of correlation functions. The pertur-
bation theory in hyperfine interaction between nuclear and
electron spins obtains 1/7; as'7?°

1

2
o > { A | 5 (k, w) + STHk, 0)] + |A) 257 (k, w)}
1 k

(5)

where  is the nuclear resonance frequency, A, are
the  hyperfine form  factors, and SP(k, w)
=3 e~k [ dte“‘”(S“(t)Sﬁ(O» is the spin dynamical structure
factor (t=—it is the real time) at temperature 7. Since  is
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FIG. 2. (Color online) Low-energy relevant parts of S%(k, w)
and S$*7(k,w) in the multipolar and SDW, phases of the
spin—%—frustrated zigzag chain in magnetic field [(a)—(c) and (e)]

and in the TL liquid of spin-l AF chains in magnetic field

[(d) and (B)]. ’

generally much smaller than the energy scale of spin-
exchange interactions, we may take the limit w/7T— +0.
Moreover, the k dependence of A} is usually weak due to the
locality of the nucleus-electron interaction. Hence, the T de-
pendence of 1/7) can be obtained by evaluating the local
susceptibility [, dre™(S%(1)SH(0)).

The local susceptibility at finite temperatures can be
readily obtained from the correlation functions (3) and (4)
through the standard procedure.'”!'® Substituting them into
Eq. (5), we obtain 1/T; for the multipolar TL liquids in the
form

UT;=D\T+ DT 4 - (6)

The two leading terms come from the second and third
terms, respectively, of the longitudinal spin correlation (3) or
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(4). The coefficients D! and D), are independent of tempera-
ture in the regime w<T'<|J,|. In Eq. (6) we have omitted
contributions from the transverse spin correlations which are
exponentially small, e™7 (A=v/¢ is proportional to the
spin gap) at low temperatures T<<|J|,|. When K<1, the
second term in Eq. (6) gives the leading contribution in the
low-temperature limit. Similarly, the known 7 dependence of
1/T in spin-% AF chains under a magnetic field is obtained
from Eq. (3) with p=1 in the form!”!

VT, = E\T+ EST? ! 4 EFTVRR-T o (7)

where the terms «E! and E}- are derived from the longitudi-
nal and the transverse spin correlations, respectively. Equa-
tion (7) commonly holds in TL-liquid phases of 1D magnets
such as AF spin chains and ladders in magnetic field.!”

Comparison of Egs. (6) and (7) tells us an important fea-
ture of the NMR relaxation rate in the multipolar TL liquids.
As we noted above, the parameter K in the multipolar phases
of Hamiltonian (1) with the FM coupling J; <0 is an increas-
ing function of H and approaches unity at the saturation
field.” The monotonic magnetic-field dependence of K pre-
sumably holds for other multipolar TL liquids as well, at
least for spin-% AF spin systems. Equation (6) then implies
that 1/7; decreases with lowering temperature in the high-
field multipolar phase (2K>1),>' while it shows diverging
behavior in the low-field SDW), region (2K <1) (see Fig. 1).
This behavior is totally different from that of conventional
TL liquids, such as AF spin chains under magnetic field [Eq.
(7)], in which 1/T, always diverges in the low-temperature
limit irrespective of the value of K (the case of K=1/2 is
special?>?3). We emphasize that this difference in the T de-
pendence of 1/7, between multipolar and conventional TL
liquids shown in Figs. 1(a) and 1(b) can be taken as a pro-
nounced signature of 1D spin-% multipolar TL-liquid phases.
The decay of 1/T; with lowering temperature in the multi-
polar liquid phases is due to both the absence of gapless
modes in $*7(k,w) and the weak singularity at w=0 in
S%(k,w) [see Egs. (8) and (9)]. We also note that NMR ex-
periments cannot distinguish a SDW,, region from ordinary
TL liquids because they both show divergent behavior of
1/T, as T—0.

Next we discuss the spin dynamical structure factors
S%F(k,w) at T=0 in the multipolar phases. The support of
S%(k,w) tells us which excitations in the (k,w) space con-
tribute to inelastic neutron scattering. The low-energy parts
of S%(k,w) are obtained from Fourier transform?* of corre-
lation functions (3) and (4). For the nematic and SDW,
phases in FM J, <0, we find

S5(k ~ 0,w) = 4K[K| 8w - v[K]), (8a)
50(w-vlk ¥ ko)
[ +0*(k F kp)?]'
| _
¢, 0 [w-ekF m/2)]
Sk~ = m2.0) = —— ’
( 72, ) [0 e(k T m/2)] V@K

where k,=7(1-2M)/2, (k)= k>+A?)"2, O (w) is a unit
step function, and ¢%* are positive numerical constants. The
S-function peak in Eq. (8) will have a finite width when the

SZ(k ~ * ky,) = (8b)

(8¢)
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nonlinearity of the low-energy dispersion is included. In the
SDW, phase with AF J, >0, k, in Eq. (8) should be replaced
with E2=W(1+2M)/ 2. The longitudinal part S%(k, ) in the
higher multipolar and SDW,, phases (p=2) is also obtained
from Eq. (4) as

5%k ~ 0,w) = p*K|k| 8w —vlk|), (9a)
c,0,(w— vlk ¥ k[,|)

Szz(k ~ * kp,w) = [wz + Uz(k Tk )2]1—K’ (9b)
P

where k,=m(1-2M)/p. For comparison, S%(k,w) in the
standard TL liquids, e.g., spin-% AF Heisenberg chains under
a magnetic field, have the form'®

S§%(k ~ 0,0) = K|k| 8w —v]k

), (10a)

C?@S(w - U|k + k] |)

Sk ~ * kj,w) = . (10b
( @) [0+ 02k T k)2 K (100)
1 —_
B i O, (w-v|k F )
Sk~ * mw)= [0 +02(k ¥ )] -VER” (10¢c)
¢ 0 (w—-vlk ¥ 27M|)
STk~ *27M,0) = —
( ) = kT 2eM)
X[w? - v2(k ¥ 27M)?]?, (104d)

_ 1 _ . ...
where y=K+ ¢, and ¢} is a positive constant.

These results are depicted in Fig. 2. The gapless excita-
tions giving dominant contribution to S%(k,w) in the pth
multipolar or the SDW, TL liquid are located at
k== (1-2M)m/p, when J,<0. These wave numbers in-
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versely proportional to the number p of magnons forming a
bound state are equal to the “2k;” of the hard-core Bose
liquid of bound p magnons’ (note that fermions and hard-
core bosons are equivalent in one dimension). The result for
the ordinary TL liquid (e.g., the AF Heisenberg chain) cor-
responds to the case p=1 or the limit J; — 0 (the lattice unit
equals two in this case). Furthermore, one can discriminate
between the SDW, phases in J; <0 and in J; >0 by observ-
ing the shift of the gapless points from k=7/2 in S%(k, w).
Another manifest difference between multipolar and ordinary
TL liquids is that the transverse component S*~(k,w) has a
gap in the multipolar phases, while that of the ordinary TL
liquids is gapless. These features in S**(k,w) can be em-
ployed as definite signatures of the multipolar and the SDW,,
phases in the model (1).

To conclude, we have studied dynamical response of the
multipolar TL liquids in the spin—%—frustrated zigzag chains
in applied magnetic field. The NMR relaxation rate 1/7; in
the multipolar TL liquids shows algebraic decay with lower-
ing temperature, which is distinct from the diverging behav-
ior in conventional TL liquids like the spin—% AF chains (see
Fig. 1). Furthermore, the wave number and the magnetiza-
tion dependence of the gapless modes in the dynamical struc-
ture factors S"‘B(k, w) can provide us with clear evidence for
the presence of the multipolar liquids as well as SDW, re-
gions of bound magnons. Our arguments are also applicable
to multipolar phases in higher-spin chains, where K can be-
come larger than unity due to soft-core repulsion of bosons.
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